Numerical Anisotropy Study of a Class of Compact Schemes
نویسندگان
چکیده
We study the numerical anisotropy existent in compact difference schemes as applied to hyperbolic partial differential equations, and propose an approach to reduce this error and to improve the stability restrictions based on a previous analysis applied to explicit schemes. A prefactorization of compact schemes is applied to avoid the inversion of a large matrix when calculating the derivatives at the next time level, and a predictor-corrector time marching scheme is used to update the solution in time. A reduction of the isotropy error is attained for large wave numbers and, most notably, the stability restrictions associated with MacCormack time marching schemes are considerably improved. Compared to conventional compact schemes of similar order of accuracy, the multidimensional schemes employ larger stencils which would presumably demand more processing time, but we show that the new stability restrictions render the multidimensional schemes 1 to be in fact more efficient, while maintaining the same dispersion and dissipation characteristics of the one dimensional schemes.
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملInternational Journal of Mathematics and Computer Sciences (IJMCS) ISSN: 2305-7661 Vol.21 September 2013 International Scientific Researchers (ISR)
We study the numerical anisotropy existent in compact difference schemes as applied to hyperbolic partial differential equations, and propose an approach to reduce this error and to improve the stability restrictions based on a previous analysis applied to explicit schemes. A prefactorization of compact schemes is applied to avoid the inversion of a large matrix when calculating the derivatives...
متن کاملThe role of pressure anisotropy on the maximum mass of cold compact stars
We study the physical features of a class of exact solutions for cold compact anisotropic stars. The effect of pressure anisotropy on the maximum mass and surface redshift is analysed in the Vaidya-Tikekar model. It is shown that maximum compactness, redshift and mass increase in the presence of anisotropic pressures; numerical values are generated which are in agreement with observation.
متن کاملThe new implicit finite difference scheme for two-sided space-time fractional partial differential equation
Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...
متن کاملTWO LOW-ORDER METHODS FOR THE NUMERICAL EVALUATION OF CAUCHY PRINCIPAL VSlLUE INTEGRALS OF OSCILLATORY KIND
In this paper, we develop two piecewise polynomial methods for the numerical evaluation of Cauchy Principal Value integrals of oscillatory kind. The two piecewisepolynomial quadratures are compact, easy to implement, and are numerically stable. Two numerical examples are presented to illustrate the two rules developed, The convergence of the two schemes is proved and some error bounds obtai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Sci. Comput.
دوره 61 شماره
صفحات -
تاریخ انتشار 2014